
International Journal of Computer Trends and Technology Volume 73 Issue 1, 65-71, January 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I1P108 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Comparative Study of Delta Lake as a Preferred ETL

and Analytics Database

Hanza Parayil Salim

Staff Engineer, Neiman Marcus, USA.

Corresponding Author : hanzapsalim@gmail.com

Received: 22 November 2024 Revised: 28 December 2024 Accepted: 15 January 2025 Published: 30 January 2025

Abstract - In the world of modern data architecture, Delta Lake stands out as a powerful and reliable solution to handle large

amounts of data. This comparative study explores Delta Lake as a potential solution for Extract, Transform, Load (ETL)

processes and analytics. Delta Lake, an open-source storage layer built on top of Apache Spark and optimized for cloud

environments, promises enhanced reliability, scalability, and performance for data pipelines. The study evaluates its advantages

over traditional databases and other big data processing frameworks, focusing on aspects such as data consistency, transaction

management, and schema evolution. By analyzing key features like ACID transactions, time travel, and integration with cloud

platforms, this paper provides a comprehensive assessment of Delta Lake's effectiveness for ETL workflows and analytical

workloads. The study highlights its strengths in handling large datasets over Data Lake and traditional databases for analytical

data processing.

Keywords - Delta Lake, Lakehouse architecture, Data Lake, Medallion architecture, Databricks, ETL, Apache spark, Distributed

computing.

1. Introduction
The data explosion we see today is fueled by new

technology, digital services expansion, more connectivity and

increasing use of data for decision-making, automation and

personalization. That has generated increased demand for big

data processing and has led to the emergence of new

technologies like Delta Lake for data processing and storage.

Delta Lake is a storage layer built on top of Apache Spark

where Spark is the distributed computing platform to process

massive datasets in parallel. Delta Lake then improves the

reliability, performance, and governance of data lakes.

The combination of Apache Spark and Delta Lake forms

a powerful solution for large-scale data processing and

analytics. This paper explores various aspects of Delta Lake,

highlighting its advantages over traditional data lakes and

databases. It explores how Delta Lake functions as both an

Extract, Transform, Load (ETL) layer and an analytics

platform, offering a contrast to traditional databases.

2. Data Lake
 Data Lake is a general term that describes a data storage

methodology that can exist in any storage where we can store

hybrid data formats. For example, you might have a data lake

containing Parquet, JSON and unstructured text files located

in an AWS S3 bucket or Azure BLOB storage. A BLOB

location with Parquet files can be considered a data lake. Or

an Azure BLOB containing many different file types with data

formatted as tables, JSON, XML, etc. The flexibility of data

lakes can become problematic as data scales. Without proper

management, they can easily turn into "data swamps," where

it becomes challenging to track file versions data schemas, or

recover from accidental data operations.

Data lakes are prone to corruption, often requiring manual

cleanup, and they lack reliability guarantees. Storing various

file formats and data types without proper versioning or

schema enforcement can quickly lead to disorganization.

However, data lakes are still an excellent choice for storing

raw data or serving as the initial ingestion layer due to their

scalability, flexibility with data types, low storage costs,

schema-on-read feature, and ability to handle large volumes

of data.

Fig. 1 Delta lake logo

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hanzapsalim@gmail.com

Hanza Parayil Salim / IJCTT, 73(1), 65-71, 2025

66

3. Delta Lake
Delta Lake is an open-source table format for data storage

that extends Parquet data files with a file-based transaction

log. Delta Lake (or Delta Table) represents a significant

evolution in data storage technology, designed to bring

reliability and robustness to data lakes.

3.1. Understanding Delta Lake Architecture

3.1.1. Storage Layer

Delta Lake stores data in Parquet format, which is a

compressed, dictionary encoded and uses a columnar storage

format optimized for big data processing. Parquet files ensure

high performance due to parallel operations and efficient

storage. The storage layer should be any cloud storage like

AWS S3, Azure BLOB or Google Cloud.

3.1.2. Transaction Log

The foundation of Delta Lake’s architecture is its

transaction log. The log records are made to the data in a Delta

table in a sequential manner. This crucial component is stored

in a ‘_delta_log’ subdirectory within the table's location. The

log consists of two main elements.

JSON Files

These are numbered sequentially (e.g. 00000.json,

00001.json, etc.) and represent individual atomic commits.

Parquet Checkpoints

Parquet checkpoints provide efficient snapshots of the

table state at specific points in time. The transaction log serves

as the single source of truth for the table's state, enabling Delta

Lake to provide its key features and guarantees. The actions

are then documented in the transaction log as ordered, atomic

units termed commits.

3.1.3. Delta Engine

Delta Lake runs on top of Apache Spark, utilizing its

distributed processing capabilities. The Delta Engine ensures

efficient execution by optimizing the queries. Delta Lake takes

the existing Parquet data lake. It makes it more reliable and

performant by storing and tracking all the metadata in a

separate transaction log and organizing the data for maximum

query performance. This is commonly known as data

Lakehouse architecture.

3.2. How Delta Lake Implements ACID Properties

The ACID properties collectively offer a mechanism to

guarantee the correctness and consistency of a database. They

ensure that each transaction functions as a single unit of

operations, produces consistent outcomes, operates

independently of other transactions and that any updates made

are persistently stored.

3.2.1. Write-Ahead Logging

Write-Ahead Logging (WAL) is a critical mechanism in

Delta Lake that ensures data integrity and enables ACID

transactions. Delta Lake logs the transaction details in the

transaction log before making any changes to the data files.

Each JSON file represents a new version of the table and is

updated atomically for every operation. WAL ensures the

atomicity and durability of transactions. If a system failure

occurs, the log contains sufficient information to either

complete the transaction during recovery or roll it back,

preventing partial updates.

3.2.2. Optimistic Concurrency Control

Optimistic Concurrency Control (OCC) is a method used

in database management systems and other distributed

systems. In the context of Delta Lake, OCC is employed to

manage multiple writers without locking the entire table. This

enables writers to perform operations without acquiring locks,

improving performance in scenarios with low conflict rates.

Involves checking for conflicts only at the time of commit,

rather than throughout the entire transaction.

WAL and optimistic concurrency control work together

in Delta Lake to provide ACID transactions while maintaining

high performance and concurrency. This synergy between

WAL and optimistic concurrency control allows Delta Lake

to provide robust transaction management while optimizing

for the high-concurrency, append-heavy workloads common

in big data environments.

3.2.3. Atomicity

Delta Lake achieves atomicity through write-ahead

logging. Before executing any changes to the data files, it

writes the details of the transaction to the transaction log.

Atomicity ensures that operations (such as INSERT or

UPDATE) on your data lake are either fully executed or not

executed at all. Delta Lake can offer the guarantee of atomicity

through the transaction log.

3.2.4. Consistency

Consistency in Delta Lake is maintained through Schema

Enforcement and Invariant Checking. Delta Lake

automatically checks that incoming data adheres to the table's

schema, as defined in the transaction log metadata. If a

transaction tries to insert data that doesn't comply with the

current schema, it is rejected. Any user-defined invariants

(like NOT NULL constraints) are enforced before committing

the transaction. If these invariants are violated, the transaction

is aborted.

3.2.5. Isolation

Delta Lake provides snapshot isolation, which protects

reading transactions from ongoing modifications. This is

achieved when a read transaction starts, and it points to a

specific version of the data, which corresponds to a state of the

transaction log. Subsequent modifications (writes) do not

affect this version, ensuring that the read transaction sees a

consistent and unchanging view of the data, even as other

modifications proceed.

Hanza Parayil Salim / IJCTT, 73(1), 65-71, 2025

67

3.2.6. Durability

Durability in Delta Lake is ensured through the

immediate recording of committed transactions. As soon as a

transaction is committed, it is recorded in the transaction log.

The log is typically flushed to persistent storage immediately.

This approach ensures that the transaction's effects persist

across system failures. The recovery process uses the log to

reapply committed transactions that might not have been

written on the data files before a failure. Delta Lake gives both

more reliability and more flexibility than regular Parquet files.

As we have already seen, ACID transactions via the

transaction log give us production-grade reliability

guarantees.

3.3. Performance Advantages of Delta Lake

Delta Lake employs various inbuilt performance

optimizations to enhance query efficiency and data

management. The core of Delta Lake optimization techniques,

Optimize, Z-Order, and Vacuum, go beyond being mere

optimization tools. Let’s dive deeper into these techniques.

3.3.1. Parquet Files and Data Skipping

Delta stores data in parquet format, and parquet files store

column statistics for row groups in the metadata footer. This

supports query optimization techniques like predicate

pushdown and column pruning.

 Delta Lake takes this further. In addition to this Parquet

functionality, Delta Lake keeps metadata at the file level in a

single transaction log. So, by using a single network request,

query engines can identify which data can be skipped. This

utilizes statistics in the transaction log to skip irrelevant files

during queries, significantly reducing query time. Delta

engine checks the per-file metadata in the transaction log

while running the queries. This metadata is also used to skip

the files that are not needed for the query.

To make this possible, Delta automatically collects

min/max statistics about the first N columns (default 32,

configurable) and writes it to the Delta log. These statistics

will be used to locate data in specific files when performing

joins. Reducing the number of files to read can significantly

enhance performance. But, min/max statistics are not very

efficient for strings and are better for numeric date/time data

types. Delta Lake can enhance the query performance by

identifying data that is irrelevant to the query. In this way, the

query engine can bypass entire files, preventing unnecessary

data reads.

3.3.2. Compaction and Z-Ordering

 Compaction combines small files into larger ones to

improve read performance and reduce metadata overhead and

this is achieved by the OPTIMIZE command. Z-Order is a

data organization technique that plays a key role in enhancing

query performance. It optimizes the physical layout of data by

collocating related information, effectively reorganizing the

data in storage. This allows certain queries to read less data,

leading to faster execution. When data is properly ordered,

more files can be skipped, which improves query efficiency

by reducing the amount of data that needs to be processed. Z-

Ordering can be applied alongside the OPTIMIZE command.

 By using Z-Ordering, query performance can be

significantly improved, as it increases the likelihood that

unnecessary data can be skipped, making queries run faster.

This graph illustrates the performance of a join query

involving two tables, each with 400 million records, both

before and after Z-Ordering.

Fig. 2 Performance comparison: z-ordered delta table vs. initial load delta table (run time in minutes)

6.5

1.8

0 1 2 3 4 5 6 7

Delta Table after initial Load

Z-Ordered Delta Table

Run Time in Minutes

Hanza Parayil Salim / IJCTT, 73(1), 65-71, 2025

68

3.3.3. Liquid Clustering

Delta Lake offers Liquid clustering to colocate similar

data in the same files so queries can run faster. Liquid

clustering is a newer algorithm for Delta Lake tables that

offers several advantages: the ability to change clustering

columns at any time, which means data engineering does not

need to decide what the query patterns would look like,

Optimized for unpartitioned tables, does not recluster

previously clustered files. It eliminates the concept of

partitions. Liquid clustering relies on Optimistic Concurrency

Control (OCC) to handle conflicts when multiple writes write

to the same table. We need to adhere to best practices when

selecting partitioning/Z-Order or liquid clustering, which will

be covered in the next section.

3.3.4. Vacuum

Vacuum removes old files no longer needed for time

travel or snapshot isolation, helping to manage storage costs.
Vacuum is an essential operation for maintaining the health of

Delta Lake. As data evolves, gets updated, or is deleted over

time, it can leave behind outdated data files that consume

valuable storage space. The Vacuum operation helps by

removing these unnecessary files.

3.3.5. Time Travel and Rollbacks

One of Delta Lake's standout features is its support for

time travel capabilities. This feature is made possible by the

multi-version transaction log. Users can query previous

versions of the table using Version numbers and Timestamps.

Time travel is particularly useful for undoing errors in data

pipelines, reproducing old versions of data for compliance

purposes and Comparing data across different points in time.

By using Vacuum, Z-Order, and Optimize, we can attain

notable improvements in performance, operational efficiency,

and cost savings.

3.4. Best Practices in Delta Lake Design

 Here, we discuss the best practices for designing a Delta

Lake. When creating a Delta table, it's recommended to

position the keys and columns frequently used for filtering on

the left side, as the first 32 columns are used to gather min/max

statistics for file skipping. The graph below demonstrates the

performance of a query involving two tables with 600 million

records and 85 columns, comparing the results when the filter

or join keys are within the 32-column limit versus when they

exceed it. Optimization can introduce some overhead during

execution, and Z-Ordering requires careful selection of

columns. Vacuum also needs to be properly scheduled and

configured. When using Z-Order, consider high cardinality

columns, such as join keys, as they facilitate better collocation.

Consider low cardinality columns for Partitions like

CustomerType, Date, etc, which depend on the volume of

data, and that avoids too many partition problems. While

partitioning helps with performance, too many partitions can

result in overhead. A good rule of thumb is to keep partition

counts under 10,000. To avoid the performance penalties

associated with small partitions, each partition should hold at

least 1 GB of data. Partitioning combined with Z-ordering is a

more traditional approach that allows for greater control over

data organization, Supports parallel writes more effectively.

However, data engineering must be aware of querying

patterns up front to choose a partition column. For large tables

with more than 10 TB of Data Partitioned, Z-Ordering is

helpful. If the size is less than 10 tb and If the downstream

users are aware of the partition and use that partition to query,

then also Partitioned, Z-Ordering is helpful; else, liquid

clustering as we have the flexibility to change the clustering

over time. For partitioned tables, make sure new partitions are

clustered and Z-ordered to enable efficient querying.

Fig. 3 Execution time comparison based on key position

2

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

<32 >32

E
x
eu

ti
o

n
 T

im
e

Key Position

ExecutionTime in Minutes

Hanza Parayil Salim / IJCTT, 73(1), 65-71, 2025

69

Fig. 4 Data processing and cloud storage flowchart

Additionally, including the WHERE clause is essential

for optimal performance. Liquid Clustering is the right choice

if your table is small to medium-sized (less than 10 TB) and

users don't consistently query with a partition column. The

choice between liquid clustering and partitioned Z-order

tables depends on several factors, including query

requirements, table size, and write patterns. For smaller tables

or those without clear partitioning strategies, liquid clustering

offers simplicity and efficiency. Larger tables or those with

concurrent write needs often benefit from partitioning with Z-

ordering. For Liquid Clustered tables, simply running the

optimize command at regular intervals will not recluster files

that have already been clustered.

Always take your specific use case into account and be

ready to test both approaches to find the best fit for your query

patterns and data. The correct choice will have a major effect

on your query performance and overall data management

efficiency.

4. Advantages of Delta Lake over Data Lake
Delta Lake enhances the reliability, performance, and

developer experience of traditional data lakes by offering

features such as Atomicity, Consistency, Isolation, Durability

(ACID) transactions, which ensure reliable read and write.

Tracking file versions in a data lake can be challenging, but

Delta Lake addresses this issue by supporting data versioning

and time travel, which allows access to historical versions of

the data. Traditional data lakes may experience performance

challenges as data volumes increase, mainly due to the

absence of optimization features. Delta Lake resolves these

challenges by applying data compaction and indexing

optimization techniques. Delta Lake also includes high-

performance query optimizations, such as file skipping, to

boost query efficiency. Delta Lake also supports colocating

similar data using Z-Order and Liquid Clustering, which

enhances query performance.

When we need more flexibility in your schema, Delta

Lake also supports Schema Evolution. The ability to change

the structure of data over time is a common requirement in

data management, known as schema evolution. In traditional

data lakes, schema evolution can be challenging; Delta Lake

simplifies schema evolution by allowing you to add, modify,

or delete columns in a table without disrupting data pipelines.

Additionally, it tracks changes, making it easier to understand

how your data has evolved over time. Schema enforcement

and evolution in Dela help maintain data consistency and

integrity by preventing errors, resulting in improved data

quality and more efficient data governance. Additionally,

Delta Lake supports flexible data operations, such as dropping

and renaming columns, deleting rows, and other DML

operations, which are not typically possible in a standard data

lake.

5. Delta Lake as an ETL Layer
Delta Lake is an excellent choice for Extract, Transform,

Load (ETL) workloads due to its performance and reliability.

Here are some key features of Delta Lake that enhance ETL

processes: ACID transactions, multiple query optimization

techniques, and data access optimized for fast retrieval and

analysis. Delta Lake efficiently handles large volumes of data

without sacrificing performance. One of the key aspects of

Delta Lake’s reliability is schema enforcement and evolution.

Additionally, Delta Lake supports both ETL and ELT

processes, allowing data storage and transformation to occur

Bronze

(Raw)

Silver

(Validated)

Gold

(Enriched)
Analytics

Streaming Data

AWSS3

Azure BLOB

Rest API

Google Storage

Hanza Parayil Salim / IJCTT, 73(1), 65-71, 2025

70

efficiently at any stage. Suppose you need the ability to easily

revert to earlier versions of your data and seek flexibility in

how and when you transform or load your data. In that case,

Delta Lake can be a great choice for your ETL workloads if

you are working with big datasets and want to improve

performance.

In addition to the previously mentioned benefits, another

advantage of using Delta Lake as an ETL layer is its

compatibility with open-source programming languages like

Python and Java. This allows you to avoid relying on third-

party ETL tools for loading data into Delta Lake. With just a

Spark compute engine, you can use these languages to write

your transformations. Both Python and Java offer a wide range

of libraries to connect to various data sources, including REST

APIs, traditional databases, cloud databases, live streaming

sources like Kafka and more. This provides flexibility in how

and when you transform or load your data into Delta Lake,

eliminating the need for traditional ETL tools. The widely

used design paradigm known as the Medallion Architecture is

implemented using Delta Lake. This architecture organizes

and processes data in layers, typically called bronze (raw),

silver (validated), and gold (enriched), each reflecting the

quality of the data at that stage. It ensures that as data passes

through these layers of validation and transformation, it

maintains Atomicity, Consistency, Isolation, and Durability

(ACID properties). By the time the data is stored in its final

form, it is optimized for efficient analytics.

6. Delta Lake as an Analytical Layer
Delta Lake seamlessly integrates with BI tools, allowing

users to easily connect and consume data directly from Delta

using built-in connectors. For example, tools like PowerBI

and Tableau can connect to Delta Lake through their user-

friendly interfaces. One of the most popular platforms for

using Delta Lake is Databricks. If you're looking for an

analytics solution, Databricks combined with Delta Lake

provides a unified platform for both BI and ML needs.

Databricks Unity Catalog serves as a centralized data

governance platform, managing access control and metadata

for Delta Lake tables. Delta Sharing, the industry's first open

protocol for secure data sharing, simplifies the process of

sharing data with other organizations, regardless of the

computing platforms they use. Traditional relational databases

rely on indexing to speed up data retrieval. However, in Delta

Lake, which stores vast amounts of data, separate index

structures become impractical due to their storage overhead.

Instead, it uses clustering to physically sort the table data,

providing similar performance benefits without incurring

additional storage costs. This is a significant advantage of

using Delta Lake as an analytical layer/Data Serving layer.

The key difference is that clustering sorts the data within the

table itself rather than creating separate index structures. Delta

Lake takes advantage of Apache Spark's scalability and cloud

storage, enabling efficient data serving at scale. Its integration

with the cloud also ensures cost-effective storage and easy

access to large volumes of data. Unlike traditional databases,

where table administration is typically managed by dedicated

administrators, Delta Lake allows the development team to

handle table optimization and maintenance. This reduces the

need for specialized resources and provides a cost advantage.

Delta Lake can be used as a serving database for customers,

offering an alternative to traditional MPP databases. By

offering a unified data management layer, Delta Lake bridges

the gap between traditional data warehouses and modern data

lakes. The scalability and flexibility of data lakes and the

reliability and performance of data warehouses are combined

in Delta Lake and there by delivering the best of both worlds.

7. Conclusion
 Delta Lake provides notable benefits, including data

versioning, ACID transactions, enhanced data reliability,

scalable metadata handling, faster query performance, and

seamless integration with Spark. These features make it an

ideal solution for large-scale data processing and analysis,

particularly in big data environments where data consistency

and reliability are essential. Delta Lake has combined the

scalability of data lakes with the reliability of data warehouses,

positioning itself as the leading storage format within the

lakehouse paradigm. Performance is crucial in data

processing, and these optimizations substantially enhance

query performance, making Delta Lake an attractive option for

organizations with complex analytical workloads.

The Medallion architecture provides an effective

framework for building ETL pipelines, and Delta Lake is an

excellent choice for implementing the Medallion architecture,

as it supports reliable transactions, is compatible with multiple

engines, and offers features that are beneficial at each stage of

the ETL pipeline. Delta Lake delivers a robust foundation for

providing high-quality data to end users or applications

requiring accurate, real-time insights from large datasets. As

the field of big data management and analytics evolves, Delta

Lake is set to play a key role by providing organizations with

improved data reliability, enhanced performance, and

increased flexibility in handling large-scale datasets.

References
[1] Michael Armbrust et al., “Delta Lake: High-performance ACID Table Storage Over Cloud Object Stores,” Proceedings of the VLDB

Endowment, vol. 13, no. 12, pp. 3411-3424, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[2] Apache Parquet. [Online]. Available: https://parquet.apache.org

[3] Data Skipping for Delta Lake. [Online]. Available: https://docs.databricks.com/en/delta/data-skipping.html

https://doi.org/10.14778/3415478.3415560
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Delta+lake%3A+high-performance+ACID+table+storage+over+cloud+object+stores&btnG=
https://dl.acm.org/doi/abs/10.14778/3415478.3415560
https://parquet.apache.org/
https://docs.databricks.com/en/delta/data-skipping.html

Hanza Parayil Salim / IJCTT, 73(1), 65-71, 2025

71

[4] Xiang Wu, and Yueshun He, “Optimization of the Join between Large Tables in the Spark Distributed Framework,” Applied Sciences,

vol. 13, no. 10, pp. 1-14, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Apache Kafka. [Online]. Available: https://kafka.apache.org

[6] Use Liquid Clustering for Delta Tables, 2025. [Online]. Available: https://docs.databricks.com/en/delta/clustering.html

[7] Databricks Runtime 15.3. [Online]. Available: https://docs.databricks.com/en/release-notes/runtime/15.3.html

[8] Structured Spark Streaming with Delta Lake: A Comprehensive Guide, 2024. [Online]. Available: https://delta.io/blog/structured-spark-

streaming/

[9] Azure Data Lake Storage. [Online]. Available: https://azure.microsoft.com/en-us/services/storage/data-lake-storage/

[10] Delta Lake Performance. [Online]. Available: https://delta.io/blog/delta-lake-performance/

[11] Built Lakehouse with Delta Lake. [Online]. Available: https://delta.io/

[12] Delta Sharing. [Online]. Available: https://learn.microsoft.com/en-us/power-query/connectors/delta-sharing

https://doi.org/10.3390/app13106257
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+the+Join+between+Large+Tables+in+the+Spark+Distributed+Framework&btnG=
https://www.mdpi.com/2076-3417/13/10/6257
https://kafka.apache.org/
https://docs.databricks.com/en/delta/clustering.html
https://docs.databricks.com/en/release-notes/runtime/15.3.html
https://delta.io/blog/structured-spark-streaming/
https://delta.io/blog/structured-spark-streaming/
https://azure.microsoft.com/en-us/services/storage/data-lake-storage/
https://delta.io/blog/delta-lake-performance/
https://delta.io/
https://learn.microsoft.com/en-us/power-query/connectors/delta-sharing

